Face Search at Scale: 80 Million Gallery
نویسندگان
چکیده
Due to the prevalence of social media websites, one challenge facing computer vision researchers is to devise methods to process and search for persons of interest among the billions of shared photos on these websites. Facebook revealed in a 2013 white paper that its users have uploaded more than 250 billion photos, and are uploading 350 million new photos each day. Due to this humongous amount of data, large-scale face search for mining web images is both important and challenging. Despite significant progress in face recognition, searching a large collection of unconstrained face images has not been adequately addressed. To address this challenge, we propose a face search system which combines a fast search procedure, coupled with a state-of-the-art commercial off the shelf (COTS) matcher, in a cascaded framework. Given a probe face, we first filter the large gallery of photos to find the top-k most similar faces using deep features generated from a convolutional neural network. The k retrieved candidates are re-ranked by combining similarities from deep features and the COTS matcher. We evaluate the proposed face search system on a gallery containing 80 million web-downloaded face images. Experimental results demonstrate that the deep features are competitive with state-of-the-art methods on unconstrained face recognition benchmarks (LFW and IJB-A). More specifically, on the LFW database, we achieve 98.23% accuracy under the standard protocol and a verification rate of 87.65% at FAR of 0.1% under the BLUFR protocol. For the IJB-A benchmark, our accuracies are as follows: TAR of 82.0% at FAR of 0.1% (verification); Rank 1 retrieval of 82.0% (closed-set search); FNIR of 61.7% at FPIR of 1% (open-set search). Further, the proposed face search system offers an excellent trade-off between accuracy and scalability on datasets consisting of millions of images. Additionally, in an experiment involving searching for face images of the Tsarnaev brothers, convicted of the Boston Marathon bombing, the proposed cascade face search system could find the younger brother’s (Dzhokhar Tsarnaev) photo at rank 1 in 1 second on a 5M gallery and at rank 8 in 7 seconds
منابع مشابه
Large-Scale Face Image Retrieval: A Wyner-Ziv Coding Approach
Great progress in face recognition technology has been made recently. Since the first face recognition vendor test (FRVT)Phillips et al. (2007) in 1993, face recognition performance has been improved by two orders of magnitude in thirteen years. Notably, in the FRVT 2006 it is the first time that algorithms are capable of human performance levels, and at false acceptance rates in the range of 0...
متن کاملLearning from Millions of 3D Scans for Large-scale 3D Face Recognition
Deep networks trained on millions of facial images are believed to be closely approaching human-level performance in face recognition. However, open world face recognition still remains a challenge. Although, 3D face recognition has an inherent edge over its 2D counterpart, it has not benefited from the recent developments in deep learning due to the unavailability of large training as well as ...
متن کاملEigen Light-Fields and Face Recognition Across Pose
In many face recognition tasks the pose of the probe and gallery images are different. In other cases multiple gallery or probe images may be available, each captured from a different pose. We propose a face recognition algorithm which can use any number of gallery images per subject captured at arbitrary poses, and any number of probe images, again captured at arbitrary poses. The algorithm op...
متن کاملFace recognition based on the multi-scale local image structures
This paper proposes a framework of face recognition based on the multi-scale local structures of the face image. While some basic tools in this framework are inherited from the SIFT algorithm, this work investigates and contributes to all major steps in the feature extraction and image matching. New approaches to keypoint detection, partial descriptor and insignificant keypoint removal are prop...
متن کاملFisher Light-Fields for Face Recognition across Pose and Illumination
In many face recognition tasks the pose and illumination conditions of the probe and gallery images are di erent. In other cases multiple gallery or probe images may be available, each captured from a di erent pose and under a di erent illumination. We propose a face recognition algorithm which can use any number of gallery images per subject captured at arbitrary poses and under arbitrary illu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1507.07242 شماره
صفحات -
تاریخ انتشار 2015